MATH 2028 Honours Advanced Calculus II
 2023-24 Term 1
 Problem Set 6
 due on Nov 8, 2023 (Wednesday) at 11:59PM

Instructions: You are allowed to discuss with your classmates or seek help from the TAs but you are required to write/type up your own solutions. You can either type up your assignment or scan a copy of your written assignment into ONE PDF file and submit through Blackboard on/before the due date. Please remember to write down your name and student ID. No late homework will be accepted.

Problems to hand in

1. Calculate the line integral $\int_{C} F \cdot d \vec{r}$ where
(a) $F(x, y, z)=\left(y^{2}, z,-3 x y\right)$ where C is the line segment from $(1,0,1)$ to $(2,3,-1)$.
(b) $F(x, y)=\left(-y^{3}, x^{3}\right)$ where C is the square with vertices $(0,0),(1,0),(1,1)$ and $(0,1)$ oriented counterclockwise.
2. Let C be the curve of intersection of the upper hemisphere $x^{2}+y^{2}+z^{2}=4, z \geq 0$ and the cylinder $x^{2}+y^{2}=2 x$, oriented counterclockwise as viewed from high above the $x y$-plane. Evaluate the line integral $\int_{C} F \cdot d \vec{r}$ where $F(x, y, z)=(y, z, x)$.
3. Evaluate the line integral $\int_{C} F \cdot d \vec{r}$ where $F: \mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow \mathbb{R}^{2}$ is the vector field

$$
F(x, y)=\left(\frac{x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}\right)
$$

and C is an arbitrary path from $(1,1)$ to $(2,2)$ not passing through the origin.
4. Determine which of the following vector field F is conservative on \mathbb{R}^{n}. For whose that are conservative, find a potential function f for it. For those that are not conservative, find a closed curve such that $\oint_{C} F \cdot d \vec{r} \neq 0$.
(a) $F(x, y)=\left(y^{2}, x^{2}\right)$;
(b) $F(x, y, z)=\left(y^{2} z, 2 x y z+\sin z, x y^{2}+y \cos z\right)$.
5. Find the area of the region enclosed by the curve $x^{2 / 3}+y^{2 / 3}=1$.

Suggested Exercises

1. Calculate the line integral $\int_{C} F \cdot d \vec{r}$ where $F(x, y)=(y, x)$ and C is the following parametrized curve:
(a) $\gamma(t)=(t, t), 0 \leq t \leq 1$;
(b) $\gamma(t)=\left(t, t^{2}\right), 0 \leq t \leq 1$;
(c) $\gamma(t)=(1-t, 1-t), 0 \leq t \leq 1$;
(d) $\gamma(t)=\left(\cos ^{2} t, 1-\sin ^{2} t\right), 0 \leq t \leq \frac{\pi}{2}$;
(e) $\gamma(t)=(\sin 2 t, 1-\cos 2 t), 0 \leq t \leq \frac{\pi}{4}$;
(f) $\gamma(t)=(\cos t, 1-\sin t), 0 \leq t \leq \frac{\pi}{2}$.
2. Repeat the exercise above with the vector field $F(x, y)=\left(y^{2}, x\right)$.
3. Calculate the line integral $\int_{C} F \cdot d \vec{r}$ where
(a) $F(x, y, z)=(z, x, y)$ and C is the line segment from $(0,1,2)$ to $(1,-1,3)$.
(b) $F(x, y, z)=(y, 0,0)$ where C is the intersection of the unit sphere $x^{2}+y^{2}+z^{2}=1$ and the plane $x+y+z=0$, oriented counterclockwise as viewed from high above the $x y$-plane.
4. Determine which of the following vector field F is conservative on \mathbb{R}^{n}. For whose that are conservative, find a potential function f for it. For those that are not conservative, find a closed curve such that $\oint_{C} F \cdot d \vec{r} \neq 0$.
(a) $F(x, y)=(x+y, x+y)$;
(b) $F(x, y)=\left(e^{x}+2 x y, x^{2}+y^{2}\right)$;
(c) $F(x, y, z)=\left(x^{2}+y+z, x+y^{2}+z, x+y+z^{2}\right)$.
5. Calculate $\int_{C} F \cdot d \vec{r}$ where $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is the vector field

$$
F(x, y, z)=\left(3 x+y^{2}+2 x z, 2 x y+z e^{y z}+y, x^{2}+y e^{y z}+z e^{z^{2}}\right)
$$

and C is the parametrized curve $\gamma:[0,1] \rightarrow \mathbb{R}^{3}$ given by

$$
\gamma(t)=\left(e^{t^{7} \cos \left(2 \pi t^{21}\right)}, t^{17}+4 t^{3}-1, t^{4}+\left(t-t^{2}\right) e^{\sin t}\right)
$$

6. Compute the line integral $\int_{C} F \cdot d \vec{r}$ where
(a) $F(x, y)=\left(x y^{3}, 0\right)$ and C is the unit circle $x^{2}+y^{2}=1$ oriented counterclockwise;
(b) $F(x, y)=\left(-y \sqrt{x^{2}+y^{2}}, x \sqrt{x^{2}+y^{2}}\right)$ and C is the circle $x^{2}+y^{2}=2 x$ oriented counterclockwise.
7. Let C be the circle $x^{2}+y^{2}=2 x$ oriented counterclosewise. Evaluate the line integral $\int_{C} F \cdot d \vec{r}$ where

$$
F(x, y)=\left(-y^{2}+e^{x^{2}}, x+\sin \left(y^{3}\right)\right)
$$

8. Find the area of the region enclosed by the curve

$$
\gamma(t)=(\cos t+t \sin t, \sin t-t \cos t), \quad 0 \leq t \leq 2 \pi
$$

and the line segment from $(1,-2 \pi)$ to $(1,0)$.
9. Compute the line integral $\int_{C} F \cdot d \vec{r}$ where
(a) $F(x, y)=\left(-x^{2} y, x y^{2}\right)$ and C is the circle of radius $a>0$ centered at the origin, oriented counterclosewise;
(b) $F(x, y)=\left(-y^{2}, x^{2}\right)$ and C is the boundary of the region given in polar coordinates by $r \leq a$, $0 \leq \theta \leq \pi / 4$ oriented counterclosewise.
10. Let $0<b<a$. Find the area under the curve $f(t)=(a t-b \sin t, a-b \cos t), 0 \leq t \leq 2 \pi$, above the x-axis.
11. Suppose C is a piecewise C^{1} closed curve in \mathbb{R}^{2} that intersects with itself finitely many times and does not pass through the origin. Show that the line integral

$$
\frac{1}{2 \pi} \int_{C}-\frac{y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y
$$

is always an integer. This is called the winding number of C around the origin.

Challenging Exercises

1. Suppose $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a vector field on \mathbb{R}^{n} defined by

$$
F\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\left(f(r) x_{1}, f(r) x_{2}, \cdots, f(r) x_{n}\right)
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$ is a given function and $r:=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}}$.
(a) Suppose f is differentiable everywhere. Prove that for all $i, j=1, \cdots, n$

$$
\frac{\partial F_{i}}{\partial x_{j}}=\frac{\partial F_{j}}{\partial x_{i}}
$$

on $\mathbb{R}^{n} \backslash\{\overrightarrow{0}\}$ where F_{k} is the k-th component function of the vector field F.
(b) Suppose f is continuous everywhere. Prove that F is a conservative vector field on \mathbb{R}^{n}.
2. Give a direct proof of Green's theorem for
(a) a triangle with vertices $(0,0),(a, 0)$ and $(0, b)$,
(b) the region $\{(x, y): a \leq x \leq b, g(x) \leq y \leq h(x)\}$ for some C^{1} function $g, h:[a, b] \rightarrow \mathbb{R}$.

